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Motivation — Continuing Issues in Gas Turbine
Power Systems

Common problem: many combustion systems exhibit instabilities

Instabilities may arise out of inadequate design or off-design
operation

Combustion instability is a result of
interactions between system

acoustics, system flow topology,
and energy/heat release

Instability can generate acoustic
waves strong enough disturb the
flow field, increase wall heat
transfer, induce system vibration,
and even catastrophic failure
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Methodology

Objective
®  Eoxcamine the acoustics/ combustion interaction for lean premixed low swirl stabilized

flames

® Assess flame/flow coupling

m Observe changes in the relative importance of various effects as scaling
parameters are varied

Technique

® Chamber-based (downstream of flame) acoustic driving

Minimizes the effect of mass/turbulence intensity oscillations at the
burner exit...

m PLIF imaging:

Phase-resolved data acquisition followed by phase-dependent re-

3.'5.

sorting...
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Experimental System - Chamber

E

‘4 o T. =

Stainless Steel Chamber
®  Diameter 127, height: 6’

Optical imaging windows

Side access ports
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Experimental System — Chamber & Burner

Vane-swirler

~—
Exit tube , L

i

I.ow swirl burner:

Screen

Reactants

Exhaust Gas (Pressure
Adjustable Valves)

151 cm

H

® 2.54 cm diameter, 5 cm length

- Loudspeak B: Speaker Section C: Quartz Window
D: Pressure Transducer F: Adjustable Premuxer

3 E: Swil Bumer
G: Fuel/Air Inlets

m flow divergence for stabilization
® provided by Dr. Robert Cheng of LBNL

H: Mitrogen Co-flow

3.‘3
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Pressure fluctuations
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Experimental System - Imaging

Laser system
® Nd:YAG pump laser, dye laser, frequency doubler

® Sheet-forming optics

Camera system La;;;;;;“ﬁ\@

m [CCD camera
® View field: 8.9cm*8.9cm (512*512]

e
ICCD- L _||/‘

Camer

Excitation — detection L .
Simplified schematic view

® 283 nm pump beam with 308-350 nm detection of imaging system

Pra
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Experimental Conditions

Reactants
m fuel: methane
m oxidizer: air
® equivalence ratio: @=0.5
Flow rates:
® air: 100 slpm, methane: 5 slpm
® reactants: 3.48m/s (outlet of the burner)

Enforced acoustics
m frequency: 22-370Hz
®m amplitude: ~0.05%
Chamber bulk pressure:
m P=1-5bar
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OH-PLIF images

1 bar

instantaneous flame(OH-PLIF), ¢=0.53, 1har, B5Hz

Hight{crm)

Width{cm)

Flarne Intensity Distribution ¢ =0.59, p =14.7psi, 85Hz

Height (Crn)

Width (Crm)

1.8 bar

instantaneous flame(OH-PLIF), ¢ =059, 1.8bar, 85Hz

Width{om)

Flame Intensity Distribution ¢ = 059, p =20psi, 85Hz

Width (G

Instantaneous OH-PLIF images

Mean OH-PLIF images
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PLIF/Chemiluminescence Comparison

Instantaneous flame

tfrom OH-PLIF

Instantaneous flame

from OH*

Visual image from ordinary camera

Averaged flame
from OH-PLIF

Averaged flame
from OH*
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Outline

Motivation — Why are we interested?
Methodology — How 1s ours different?

Experimental system

® Chamber, burner, & imaging system

Results and analysis
m Flame Surface Density assessment < You are here

® Analysis of physical mechanisms

Conclusions
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Rayleigh Index Distribution from OH-PLIF
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Flame Surface Density vs. Flame Intensity

Instantaneous 1mage

Flame front
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Flame surface density is approximated as: fofal flame length/ area

OH intensity is : sum of OH/ area

Calculated in Matlab
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Flame Surface Density vs. Flame Intensity (1 bar)

block 1, ¢=0.89, p=14.7 psi, B8Hz

block 2, ¢=0.89, p=1.0 bar, 85Hz
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Flame Surface Density vs. Flame Intensity (1.5 bar)

variation normalized by mean
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Flame Surface Density with Increasing Pressure
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Flame Surtface Density increases with increasing pressure
even while Reynolds number is held constant

Increases are most likely due to increases in turbulence
intensity

&5.
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Natural Instability Growth

Normal operation involves controlling the pressure amplitude
by increasing or decreasing the driving power to hold the
amplitude constant

As a test, constant power was applied at various frequencies

At 125 Hz, the system slowly developed an unstable mode that
grew the pressure amplitude, caused the flame to move
upstream, and the flame to extinguish after some time

It was found that there 1s 2 minimum driving pressure to
establish the shear-layer vortex street that then can lead to this
unstable mode

&5.
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Ettect of Pressure Oscillation Amplitude

Amplitude (dB)

The pressure variation p’/P 001
has to be more than 0.04% to
trigeer coupling

Between 0.04% to 0.7%

perturbation, the distribution
of the vortex structure
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Flame Transition
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Summary

Flame Surface Density is constant across frequencies
Guessing that the instability 1s driven by burner heating

Increase in heat release appears to be driven by an
increase in FSD

If that 1s true, is the FSD increase driven by increasing
turbulence intensity coming off of the swirler?

Flash-back 1s probably driven by tlow reversal driven by
velocity oscillations at the burner exit

Why does blowout occur?
3-‘3 ..
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Thanks for Listening!

Any Questions?
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Analysis

Wave equation
1 0°p’ 1 R oq
VZ r —
SPCAPCR C, ot 9

Superscript ()’ denotes deviations from mean value, z is the speed of sound, and the term g contains
all influences other than that of heat addition.

Energy per cycle

A‘gn (t) — (7 o

o] Py
ﬁjdV! p th

7 denotes different modes of the acoustic oscillation

Rayleigh Index ,
J‘ P4 dE
2 Domsq

Positive Rf means that pressure oscillation and heat release are in phase and hence the
oscillation 1s enhanced

In reality, a flame could be stable while exhibiting a positive Rayleigh Index since
dissipation is not included in this equation
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Data Reduction
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No clear structure seen from OH concentration

Pattern appears in Rayleigh Index
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Rayleigh Index (1.8bar)

Aweraged Rayleigh Indexd = 0.55, p =27 psi, Z2Hz

7 22Hz

Averaged Rayleigh Indexd = 0.85, p = 27 psi, 140Hz
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Shear Layer Forming Vortices

A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. L. Welcome, ~ A
Conservative Adaptive Projection Method for the Variable Density

Incompressible Navier-Stokes Equations,', J. Comp. Phys., 142, pp. 1-46,
1998.
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Vortex Behavior

The Rayleigh Index through a line running between the vortex cores is
extracted and a curve fit 1s applied
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Sensitivity to Swirl Number
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Neither swirl number nor pressure change have a significant impact on
the coupling evident in these low swirl flames
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Net Global Rayleigh Index
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Although there are local negative positive regions, the global Rayleigh
index is close to zero

Similar phenomena is observed for the other pressures tested

The increase of pressure does affect the coupling but not significant
difference observed yet
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Coupling Range

How to predict the coupling?
® Can you easily tie the shear layer instability to jet instability or behavior?

Are Reynolds number and Strouhal number analyses useful?
U 1s the inlet velocity
Re=UDplu D is the burner diameter
St=fDIU 1 1s excitation frequency

p is the dynamic viscosity of the reactants

Re = 5562 (1bat), £ 55-120Hz, St: 0.27-0.87
Re =7376 (1.8bar), f22-140Hz, St: 0.23-1.49
Re = 8547 (1bat), f 22(tested), St: 0.11

&5.
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Coupling range study

Averaged Rayleigh Indexd = 0.5, p =1.0 bar, 45Hz Averaged Rayleigh Indexd = 0.57, p = 25psi, 45Hz Ayeraged Rayleigh Indexd = 0.59, p =1.0 bar, 45Hz
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Rayleigh Index Exploration
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OH concentration changes in a cycle

Raleigh Index distribution doesn’t change much in a cycle.
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Comparison of Unstructured Flow
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When the acoustics perturbation and the shear layer are not coupled,
there is no clear structures from OH and Rayleigh index.
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